Spin echoes, inhomogeneous fields, relaxation and chemical exchange.

Dušan Uhrín School of Chemistry University of Edinburgh

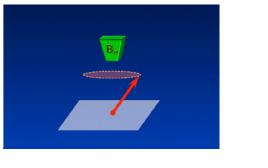
Research School of Chemistry

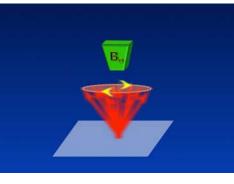
3rd SNUG meeting

Rotating frame – a very useful concept in NMR

Spin precessing in a magnetic field

slow





Stroboscope

fast

on - at the resonance

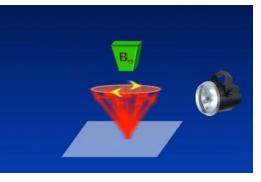
appears to be stationary

frequency – spin

off

stay

put

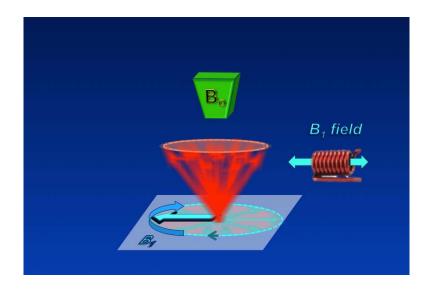


Merry-go-round

run around at the spinning frequency

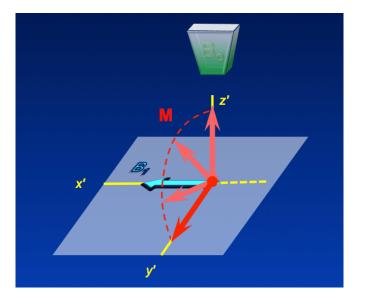
http://mriquestions.com/rotating-frame.html

Radiofrequency pulse in a rotation frame



Radiofrequency pulse oscillating (intensity B_1) at the resonance frequency is stationary in the rotating frame....

....spin does not feel the external field anymore, only the B_1 field, starts rotating around it.

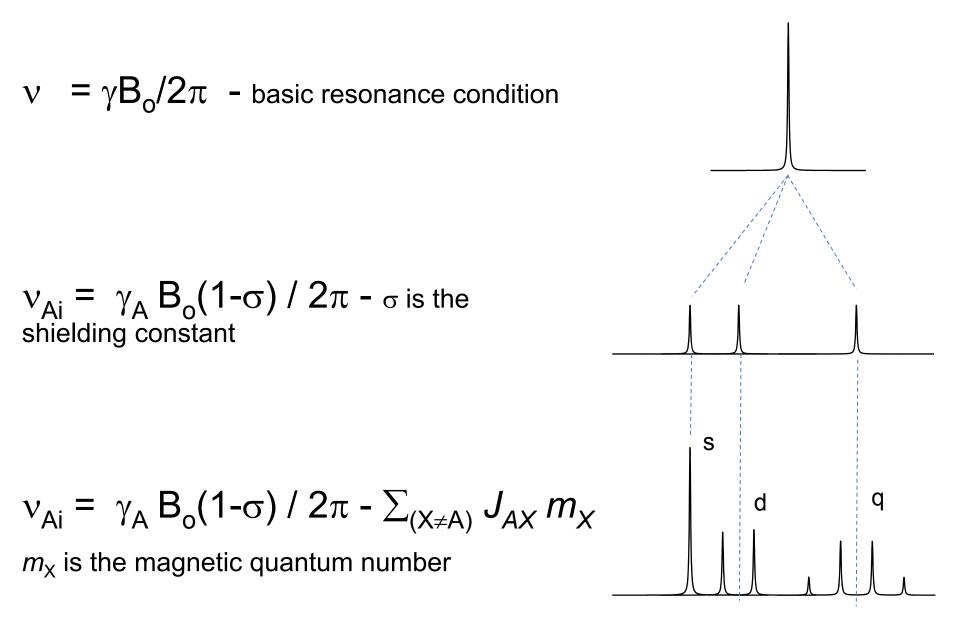


Keeping the r.f. on, can place the spin into y'z' plane at an arbitrary place

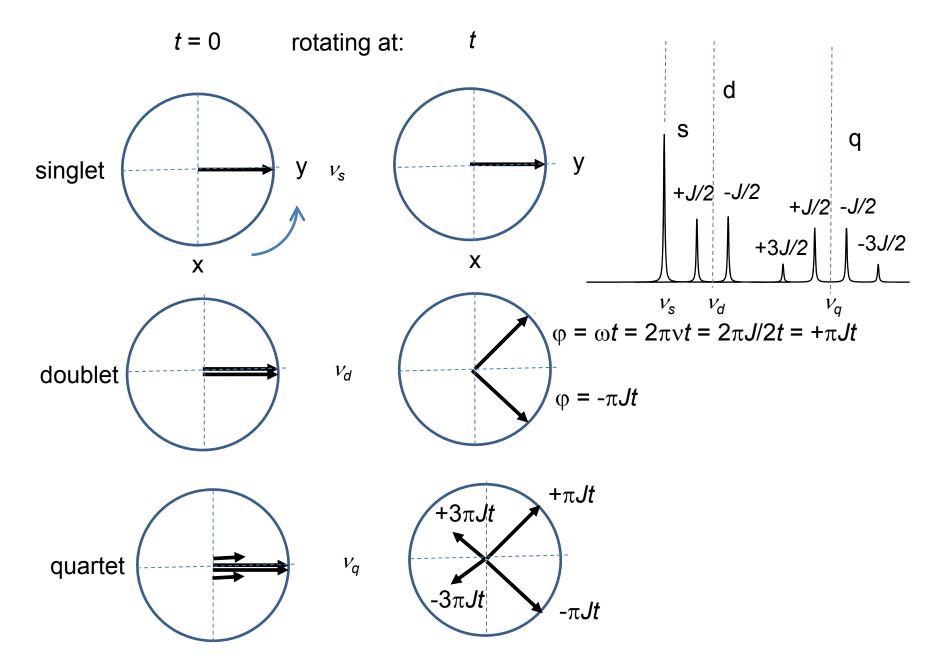
.... but usually chose a 90° rotation (as here) or a 180° rotation (-z')

http://mriquestions.com/rotating-frame.html

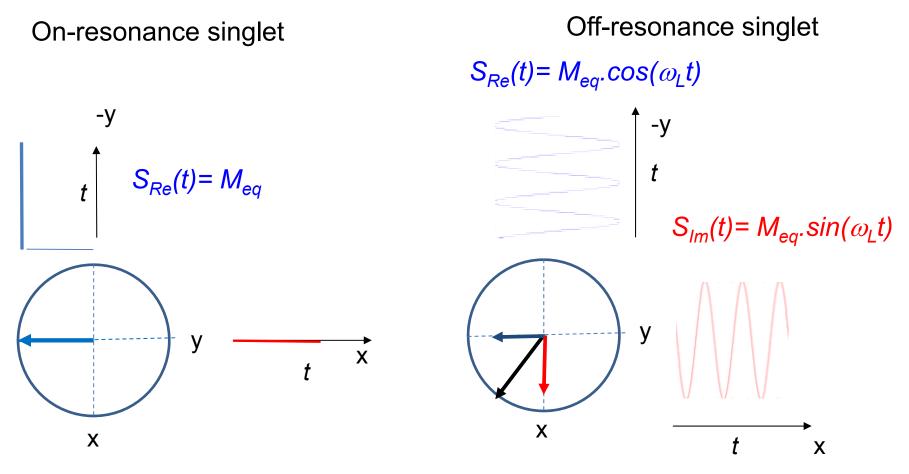
NMR resonance condition



Multiplets in a rotating frame (after a 90° pulse)



Signal detection along the x and y axis

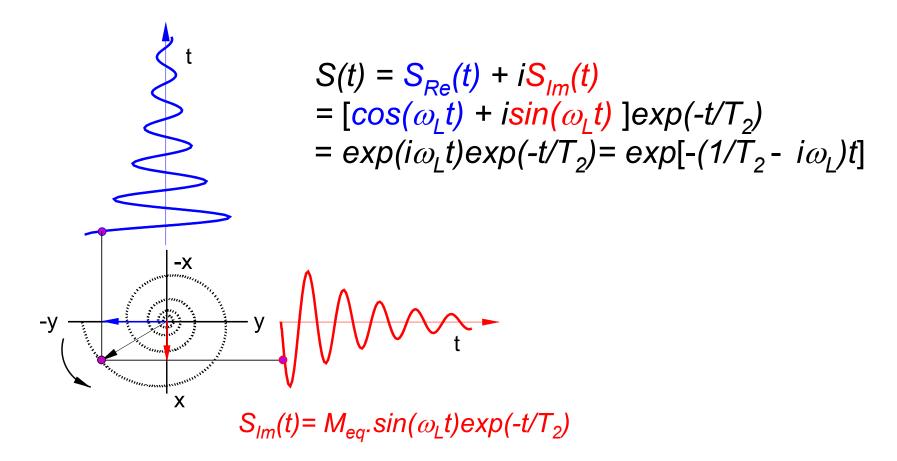


Oscillating current induced by rotating magnetic moments = = Free Induction Decay or FID

No relaxation considered here!

FID of an off-resonance relaxing singlet

 $S_{Re}(t) = M_{eq} \cdot \cos(\omega_L t) \exp(-t/T_2)$



FT of FID yields a Lorentzian line

$$S(t) = \exp[-(1/T_2 - i\omega_L)t] \leftarrow \text{FID}$$

$$Guess \text{ function}$$

$$S(\omega) = \int_0^{\infty} S(t) \exp(-i\omega t) dt$$

$$S(\omega) = \int_0^{\infty} \exp\{-[1/T_2 + i(\omega - \omega_L)t] dt$$

$$S(\omega) = \frac{1}{(1/T_2) + i(\omega - \omega_L)} =$$

$$S(\omega) = \frac{1}{(1/T_2) + i(\omega - \omega_L)} \frac{(1/T_2) - i(\omega - \omega_L)}{(1/T_2) - i(\omega - \omega_L)}$$

$$S(\omega) = \frac{(1/T_2)}{(1/T_2)^2 + (\omega - \omega_L)^2} + i \frac{(\omega_L - \omega)}{(1/T_2)^2 + (\omega - \omega_L)^2}$$

Absorption Lorentzian line.

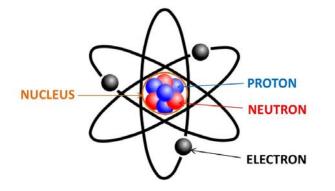
$$S(\nu) = \frac{(1/T_2)}{(1/T_2)^2 + 4\pi^2 (\nu - \nu_L)^2}$$

$$\Delta_{1/2} = (1/\pi T_2)$$

e.g. 1/ \pi 0.318s
= 1 Hz
$$\nu_L \qquad \nu \text{ [Hz]}$$

 $= A(\omega) + iD(\omega)$ or Absorption + Dispersion Lorentzian line T_2 - spin-spin relaxation time [s] $R_2 = 1/T_2$ - spin-spin relaxation rate [Hz]

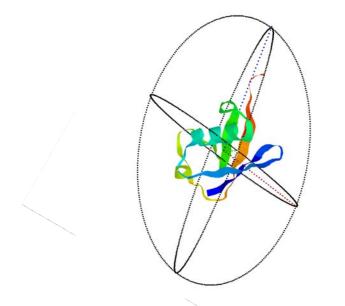
Why are nuclear excited states so long-lived?



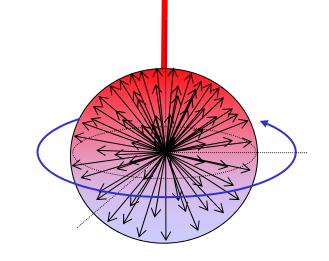
- 1. Large, empty spaces surround nuclei
- 2. Nuclear magnetic moments are only sensitive to other magnetic moments

What are the driving forces behind relaxation?

Molecules rotate violently



Spin rotate at their Larmor frequencies

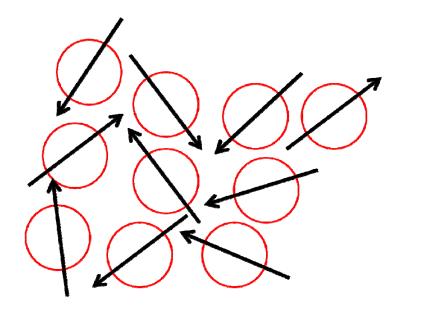


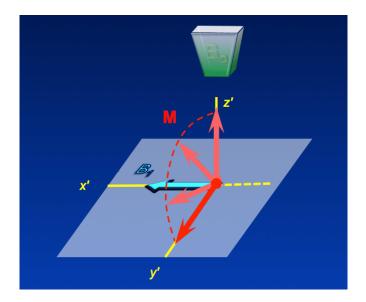
The time it takes for a molecule to rotate 1 radian (ca 60°) is referred to as a rotational correlation time, τ_c .

$$\tau_{\rm c} = 10^{-12} - 10^{-9} {\rm s}$$

Temporarily, these motion create a magnetic moment of one nucleus that is stationary in the rotating frame of another spin. While ship rotates violently, spin stay stationary as keel of a ship, unless ...

... the magnetic fields cause them to rotate for a moment.



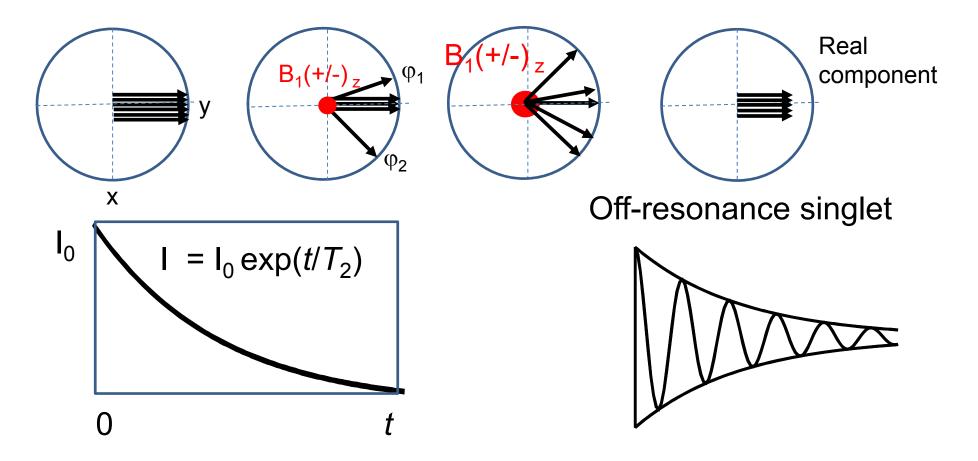


Local pulse of a random flip angle and random direction in a single molecule – **this is the mechanism of relaxation**

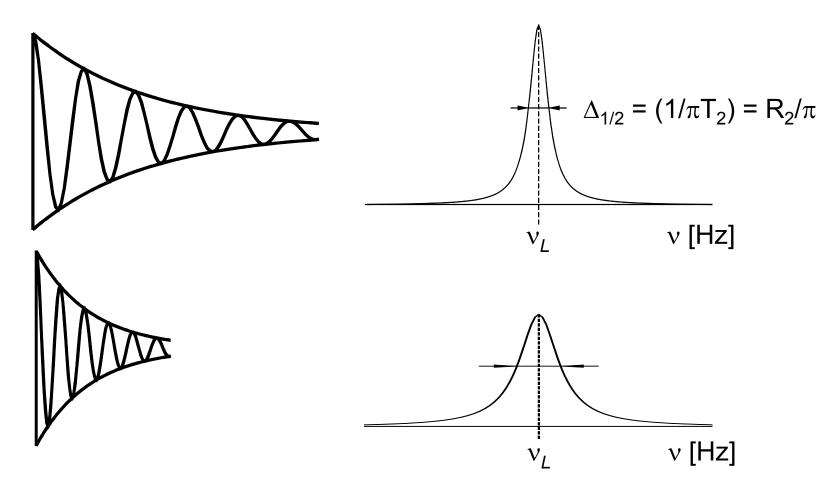
T₂ relaxation seen in the rotating frame

On resonance singlet (five molecules)

A magnetic moment of a nearby dipole becomes stationary along the z (or -z)axis of the rotating frame. This acts as a local z-pulse and moves a spin in two molecules by φ_1 and φ_2



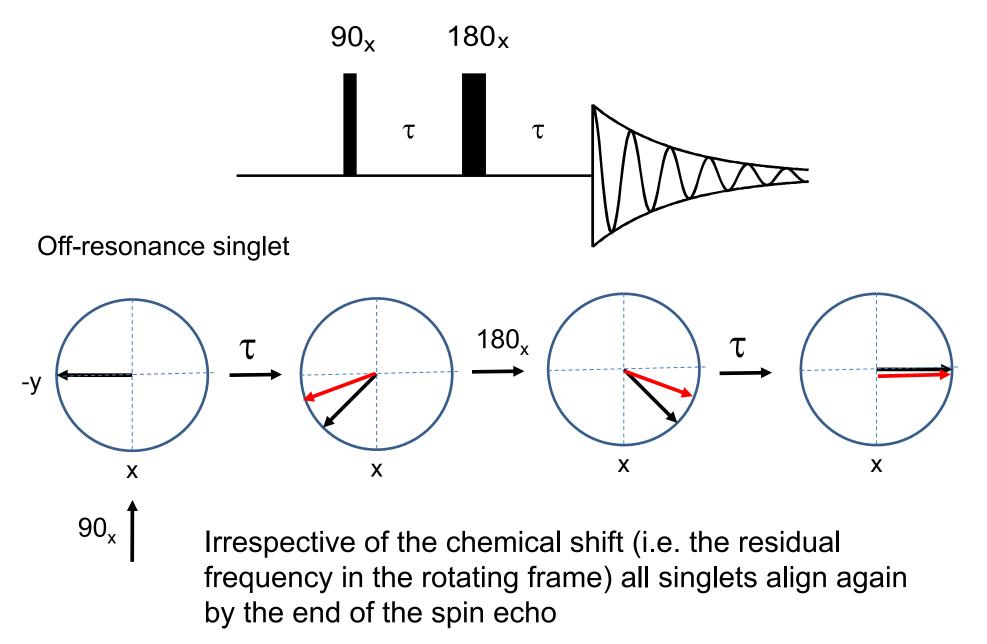
Shorter T_2 , or faster relaxation rate, R_2 , = broader lines

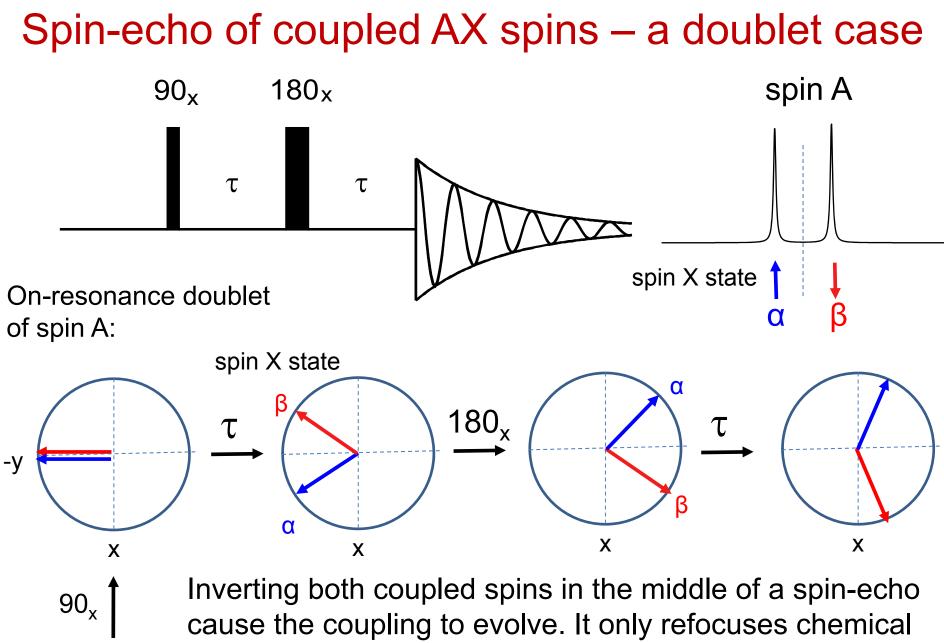


Sources of spin-spin relaxation:

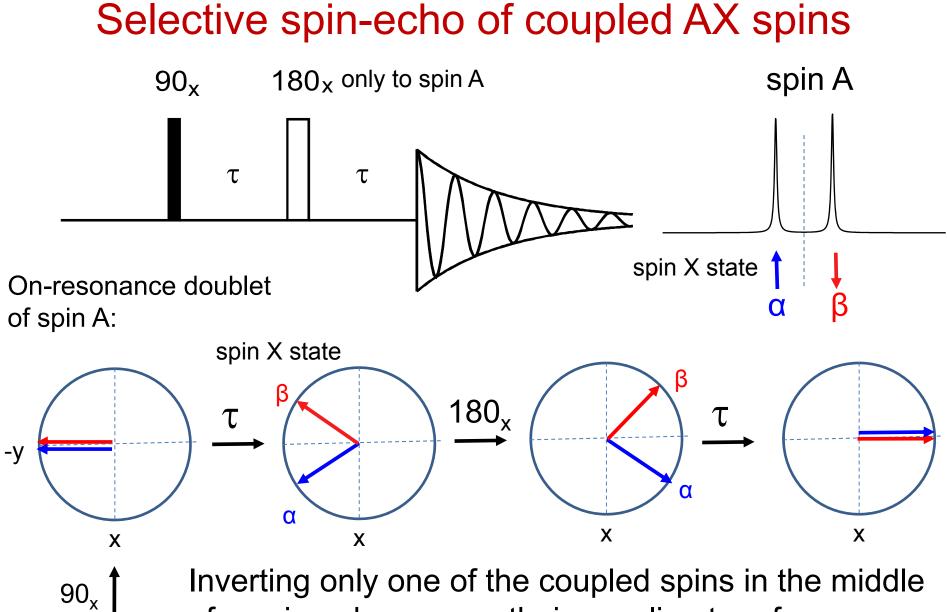
- Natural relaxation size of the molecules
- Magnetic field inhomogeneity
- Chemical exchange

Spin-echo – the most important building block of FT NMR

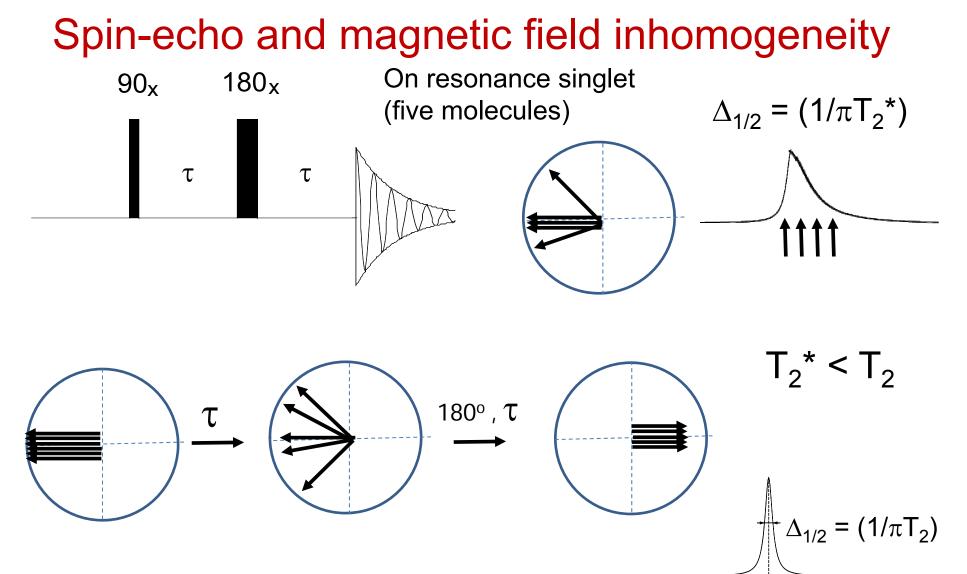




shift, not the coupling.



of a spin-echo causes their coupling to refocus.

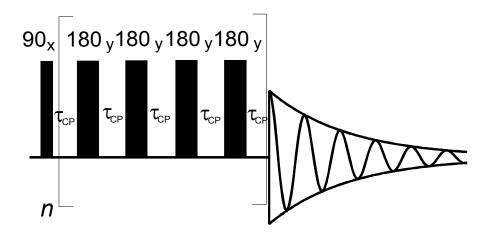


Spin-echo removes the effect of the magnetic field inhomogeneity. It does not stop relaxation. Signal still gradually disappears.

Signals sampled during the spin-echo are narrower

How do we measure T_2 relaxation times?

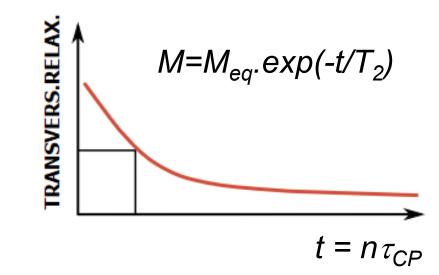
CPMG: Carr-Purcell, Meiboom-Gill



The time evolution due to *J*-modulation becomes negligible when

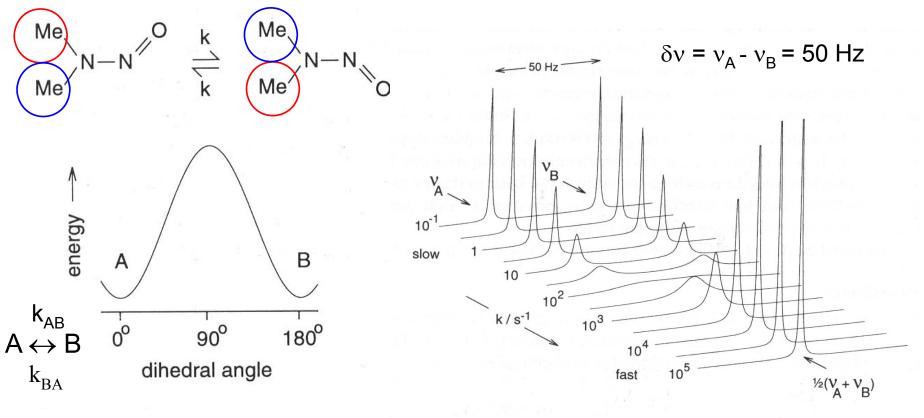
$$\sigma_{
m cp}\cdot \sqrt{\delta^2+J^2}\ll 1$$

where τ_{cp} is an interpulse delay (in s), *J* is the coupling constant (in Hz), and δ is the chemical shift difference (in Hz) between the coupled spins.



Dynamic equilibrium between two equal energy states - a symmetrical two-site exchange

Dimethylnitrosamine



 $k_{\text{ex}} = k_{\text{AB}} + k_{\text{BA}} \text{ [s}^{-1}\text{]}$ Average lifetime $\tau = 1/k_{\text{ex}} \text{ [s]}$

Can we simulate the chemical exchange spectra?

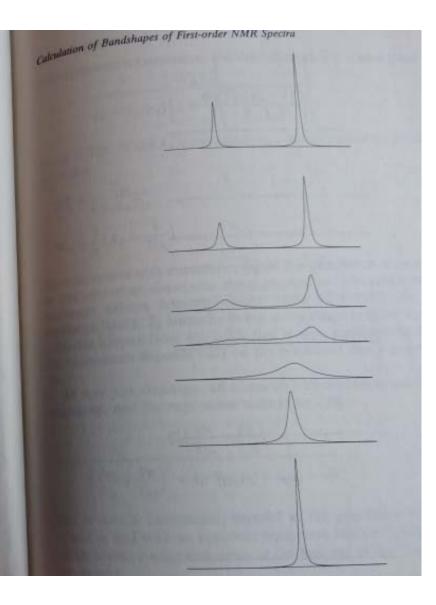
14 14 only the final expression is given here, as it has been expressed by Rogers and Woodbrey (4) (2.19). $\begin{aligned}
& = -C_0 \frac{\left[p\left[1 + r\left(\frac{P_B}{T_{2A}} + \frac{P_A}{T_{2B}}\right)\right] + QR\right]}{p^2 + R^2} \qquad (2.19) \\
& = \nu_A - \nu_B, \Delta \nu = 0.5 (\nu_A + \nu_B) - \nu \\
& = r\left[\frac{1}{T_{2A} \cdot T_{2B}} - 4\pi^2 \Delta \nu^2 + \pi^2 (\delta \nu)^2\right] + \frac{P_A}{T_{2A}} + \frac{P_B}{T_{2B}} \\
& Q = r\left[2\pi\Delta\nu - \pi\delta\nu(p_A - p_B)\right] \\
& R = 2\pi\Delta\nu\left[1 + r\left(\frac{1}{T_{2A}} + \frac{1}{T_{2B}}\right)\right] + \pi\delta\nu r\left(\frac{1}{T_{2B}} - \frac{1}{T_{2A}}\right) + \pi\delta\nu(p_A - p_B) \\
& r = \frac{P_A}{k_B} = \frac{P_B}{k_A}
\end{aligned}$

A program for this equation adapted to a Hewlett-Packard desk calculator Model 9820A is given in the Appendix. The data needed to calculate the bandshape are k_A , p_A , δv , T_{2A} and T_{2B} , and their evaluation will be discussed in Chapter 6.

Typical bandshapes for an uncoupled two-site exchange system are shown in Fig. 2.4a. Equation 2.19a is also valid for a degenerate exchange, such as that represented by I ($p_A = p_B = 0.5$, $k_A = k_B$), and typical spectra are shown in Fig. 2.4b.

(c) Effects of k, δv and p on the bandshape

It is evident from Fig. 2.4 that the rate constant has a profound effect on the handshape. At slow exchange rates two sharp signals appear



Rogers, M. T.; Woodbrey, J. C. J. Phys. Chem. 1962, 66, 540.

Can we simulate the chemical exchange spectra?

$$v = -C_{0} \frac{\left\{P\left[1 + \tau\left(\frac{p_{B}}{T_{2A}} + \frac{p_{A}}{T_{2B}}\right)\right] + QR\right\}}{P^{2} + R^{2}}$$
(2.19)

$$\delta \nu = \nu_{A} - \nu_{B}, \Delta \nu = 0.5 (\nu_{A} + \nu_{B}) - \nu$$

$$P = \tau\left[\frac{1}{T_{2A} \cdot T_{2B}} - 4\pi^{2}\Delta\nu^{2} + \pi^{2}(\delta\nu)^{2}\right] + \frac{p_{A}}{T_{2A}} + \frac{p_{B}}{T_{2B}}$$

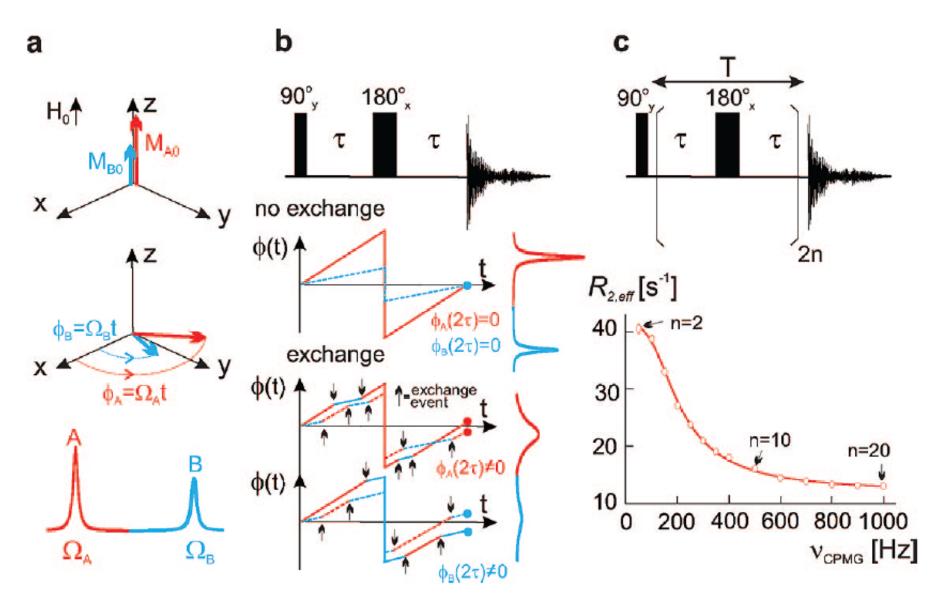
$$Q = \tau\left[2\pi\Delta\nu - \pi\delta\nu(p_{A} - p_{B})\right]$$

$$R = 2\pi\Delta\nu\left[1 + \tau\left(\frac{1}{T_{2A}} + \frac{1}{T_{2B}}\right)\right] + \pi\delta\nu\tau\left(\frac{1}{T_{2B}} - \frac{1}{T_{2A}}\right) + \pi\delta\nu(p_{A} - p_{B})$$

$$\tau = \frac{p_{A}}{k_{B}} = \frac{p_{B}}{k_{A}}$$

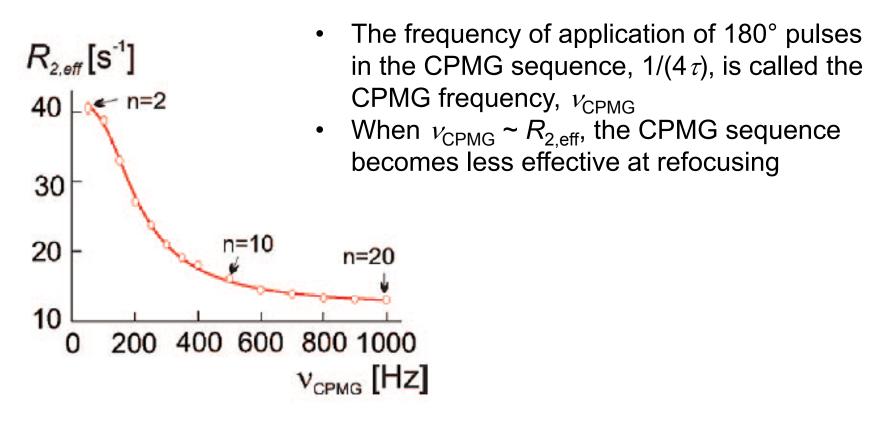
 $k_{\rm A}$, $k_{\rm B}$ - rates of transitions between states $\delta\Delta$ frequency differences between states $p_{\rm A}$, $p_{\rm B}$ - populations of exchanging states $T_{2\rm A}$, $T_{2\rm B}$ - relaxation in the absence of exchange

Relaxation dispersion



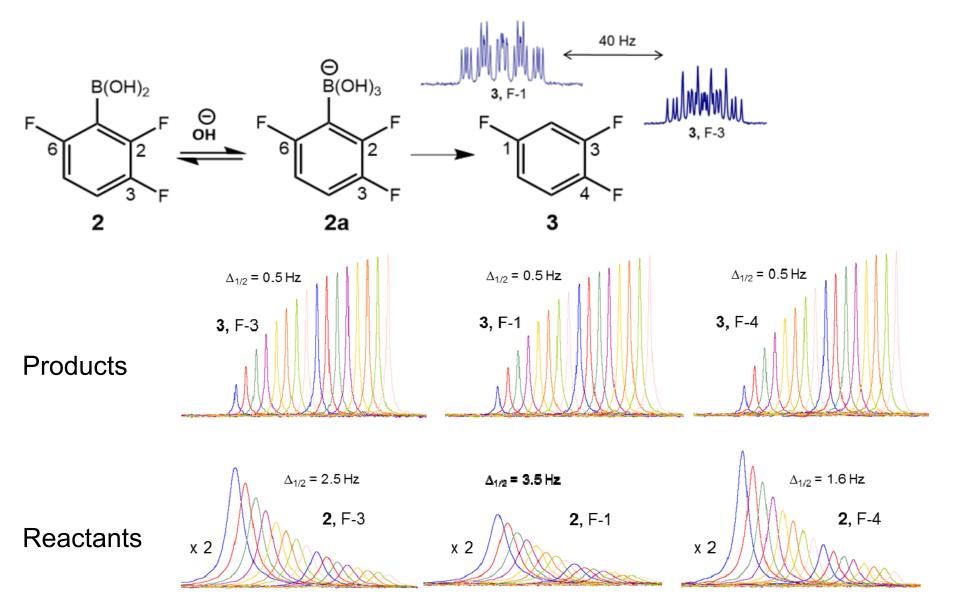
Korzhnev and Kay, Acc. of Chem. Res. 41, 2008, 442-451

Relaxation dispersion



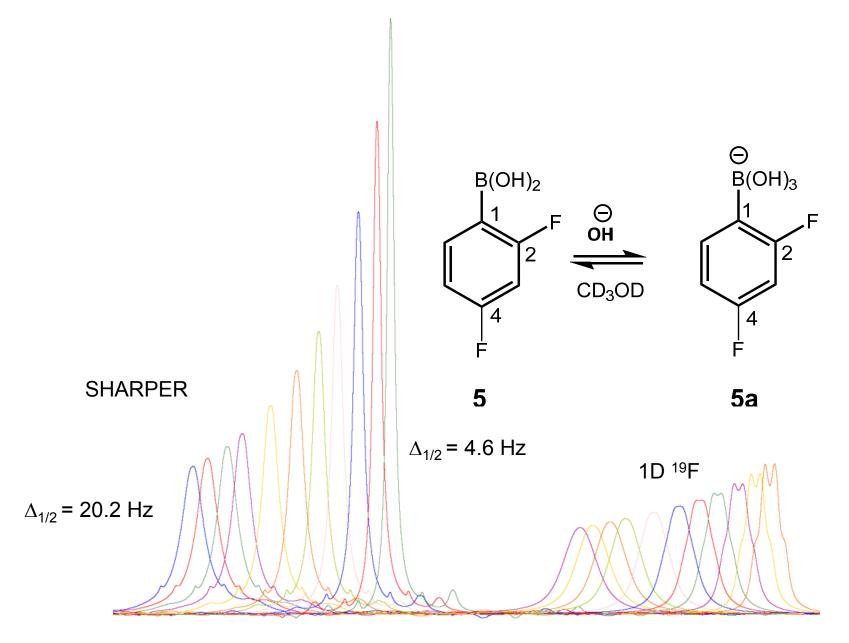
- NMR relaxation dispersion profiles $R_{2,eff}(v_{CPMG})$ provide sensitive measures of conformational/chemical exchange
- Fitting of $R_{2,eff}(v_{CPMG})$ allow determination of:
 - (i) rates of transitions between states
 - (ii) frequency differences between states
 - (iii) populations of exchanging states

Protodeboronation dynamics



A. Jones et al, Anal. Chem., 2017, 89, 10013–10021.

Protodeboronation dynamics



Boric acid – boronate equilibrium

