

## Seeing the (previously) invisible: using <sup>19</sup>F NMR to probe a dynamic DNA structure

Brian O. Smith







## **Biology** DNA replication & repair Triplet repeat diseases



#### Kenneth Marians

## **DNA three way junctions**

### Nanotechnology

DNA scaffolds Charge/excitation transfer guides/switches



## Guests for small molecules





#### **Previous Structures of TWJs**





### **Perfectly complementary TWJs?**







### What complementary techniques tell us

#### **Ensemble FRET**



Gel mobility Crosslinking/ligation



H-arm



MD

SAXS



## Single molecule measurements allow more precise distance measurements





## A fully complementary TWJ model





## So why can't NMR see what's going on in a TWJ?





# Well – actually it might if you look in the right way

### $R1\rho$ Relaxation Dispersion



Kimsey at al. Nature 519, 315–320



## So why can't NMR see what's going on in a TWJ?





#### But is there a cheaper, less ambiguous way?

$$v = \frac{\gamma}{2\pi} B_0 (1 - \sigma)$$

| Nucleus              | γ (10 <sup>6</sup> rad s <sup>-1</sup> T <sup>-1</sup> ) | $\gamma$ /2 $\pi$ (MHz T <sup>-1</sup> ) |
|----------------------|----------------------------------------------------------|------------------------------------------|
| <u><sup>1</sup>H</u> | 267.513                                                  | 42.577                                   |
| <sup>2</sup> H       | 41.065                                                   | 6.536                                    |
| <sup>13</sup> C      | 67.262                                                   | 10.705                                   |
| <sup>15</sup> N      | -27.116                                                  | -4.316                                   |
| <sup>19</sup> F      | 251.662                                                  | 40.052                                   |
| <sup>31</sup> P      | 108.291                                                  | 17.235                                   |



#### But is there a cheaper, less ambiguous way?

$$v = \frac{\gamma}{2\pi} B_0 (1 - \sigma)$$

| Nucleus              | γ (10 <sup>6</sup> rad s <sup>-1</sup> T <sup>-1</sup> ) | γ /2π (MHz T <sup>-1</sup> ) |
|----------------------|----------------------------------------------------------|------------------------------|
| <u><sup>1</sup>H</u> | 267.513                                                  | 42.577                       |
| <sup>2</sup> H       | 41.065                                                   | 6.536                        |
| <u>13</u> C          | 67.262                                                   | 10.705                       |
| <sup>15</sup> N      | -27.116                                                  | -4.316                       |
| <sup>19</sup> F      | 251.662                                                  | 40.052                       |
| <u>31</u> P          | 108.291                                                  | 17.235                       |



#### <sup>19</sup>F NMR in nucleic acids?





**5F-U** 





#### 5F-dU





5F-(d)C



Puffer et al. NAR 37, 7728-7740



#### Back to the TWJ – sequence dependence





## GC rich TWJ shows multiple conformations





## Major population looks like less-GC rich TWJ





## Major population looks like less-GC rich TWJ

Not enough info on the minor conformer





#### 5<sup>19</sup>F-dC GC-rich TWJ





#### 5<sup>19</sup>F-dC ssDNA





#### 5<sup>19</sup>F-dC GC-rich TWJ





### 5<sup>19</sup>F-dC secondary isotope effect







#### 5<sup>19</sup>F-dC GC rich dsDNA





#### 5<sup>19</sup>F-dC GC-rich TWJ





## What conformation is responsible for the shift?





What are the exchange parameters?

## TEDDY (Dynamic NMR) in Topspin

• How fast does it exchange?





## Future?



- <sup>19</sup>F <sup>1</sup>H heteronuclear NOEs?
- Other TWJ sequences
- 19F-dU to complement 19F-dC?
- Try <sup>13</sup>C CEST etc to correlate
- TWJ chelators
- More biologically relevant DNA structures



## Acknowledgements

#### **Steven Magennis** Michael Morten Anita Toulmin

**Gunnar Schröder** 





