

Benchtop qNMR Spectroscopy
A Journey Across
Three Continents

SNUG PG Meeting *January 12th, 2023*

Alexander Maier, PhD

Company Snapshot

Sell Direct in USA, Canada, Germany, and other parts of Europe; Distributor Network of 45 dealers in the UK and the rest of world.

Nanalysis Scientific Corp.

TSXV: NSCI | OTC: NSCIF | FRA: 1N1

A global product development and manufacturing company designing a suite of leading-edge, high-performance magnetic resonance technologies to provide innovative solutions to customers in academia, government and industry.

Technology Leader

- Products in LF, HF and MRI
- Patent protected technology

MR Research Leader

 Exciting international research collaborations with government & industry

Growing Global Business

- > 200 employees
- 1000+ customers worldwide

Miniaturization: accessible, affordable, automatable

Magnet platform

- NdFeB magnets arranged in patented, highly homogenous compact Halbach based arrays
- Cryogen free

Electronics

- Condensed to a small circuit board stack
- Embedded computer for data acquisition and processing

100 MHz (2.35 T) 110 kg

Nanalysis Benchtop NMR Spectrometers

	60e	60PRO	100e	100PRO			
Field strength	60 MHz	Contraction	100 MHz (2.35 T)				
Magnet	NdF	еВ	NdFeB				
Weight	26 k	g	110 kg				
Cryogen Free	Υ		Υ				
Shielding	<2 Gauss outsi	de enclosure	<2 Gauss outside enclosure				
Operating Temperature	18-26	5°C	18-26°C				
Touchscreen interface	Υ		Υ				
Nuclei	¹ H/ ¹⁹ F/X X: ¹¹ B, ¹³ C, ³¹ P,		¹ H	¹ H/X X: ¹¹ B, ¹³ C, ¹⁹ F, ³¹ P,			
Experiments	1D, T ₁ , T ₂ , COSY, JRES	1D, T ₁ , T ₂ , COSY, JRES DEPT, HSQC, HETCOR, HMBC, Decoupling	1D, T ₁ , T ₂ , COSY, JRES	1D, T ₁ , T ₂ , COSY, JRES DEPT, HSQC, HETCOR, HMBC, Decoupling			

Geographic Distribution of NMR

	Country	%
1	United States	32
2	Germany	11
3	China	10
4	Japan	10
5	UK	6
6	France	4
7	India	4
8	Switzerland	3
	Total	80

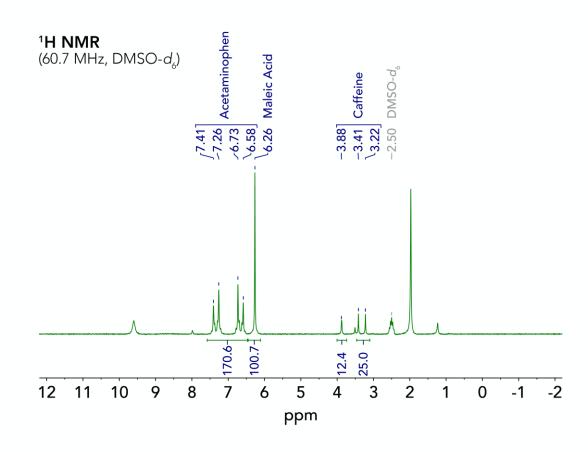
Quantitative NMR (qNMR)

NMR is inherently quantitative

Integration area of each signal is directly proportional to the number of chemically equivalent nuclei giving rise to that signal

Components do not need to be separated

Provides a snapshot of everything in solution


A single product resonance can be used to quantify

The analysis is non-destructive

The analyte can be recovered

Calibrant methods:

- 1) Internal calibrant
- 2) External calibrant
- 3) Calibration curve
- 4) ERETIC (digital)

qNMR Experiments – Key Considerations

ACCURACY

Weighing
Volumes
Internal calibrant purity

ACQUISITION PARAMETERS

Numbers of points
Acquisition time
Spectral width

RELAXATION

Scan delay must be chosen to ensure all spins of interest are fully relaxed between pulses

Typically, 5-7 times longest T_1

>> Please see our blog for more details!
Nanalysis website → Resources → Benchtop NMR blog
https://www.nanalysis.com/nmready-blog

Development of qNMR Methods

7Li

31P

¹H

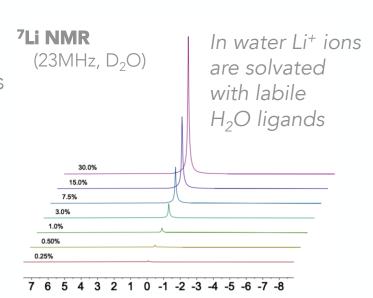
Determination of lithium content in brine pools from Chile

Identification of lignin substructures in Canada

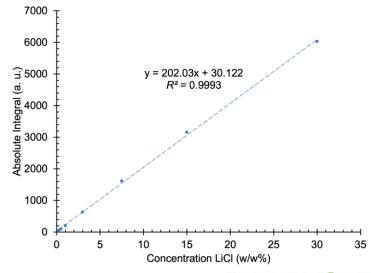
Quantification of MDMA in ecstasy tablets collected at music festivals in the UK

Quantification of Lithium Content in Brine Pools

Problem

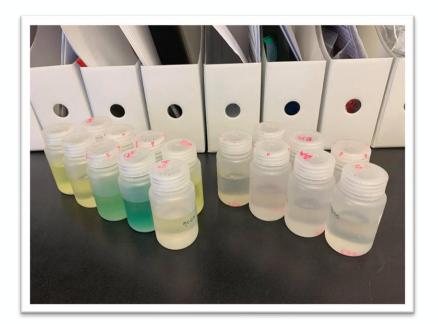

- Lithium is becoming increasingly important in our society
- AA & ICP methods require cumbersome sample preps, are difficult to maintain, and are prone to matrix effects

NMR lithium analyzer


Benchtop qNMR for rapid, onsite, simple analysis of lithium content

ROI

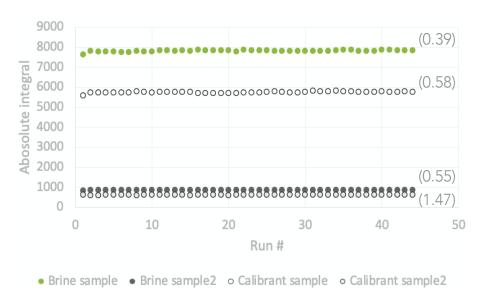
- Simple sample preparation
- Reduced operating expenditures
- Rapid & accurate results
- Automated procedure


Quantification of Lithium Content in Brine Pools

Collaboration with Sociedad Chilena de Quimica's (SQM)

16 samples of underground brine pools were obtained

Two sets of these samples were prepared: one was sent to Nanalysis Corp. in Calgary, Canada, while the other remained at SQM in Chile



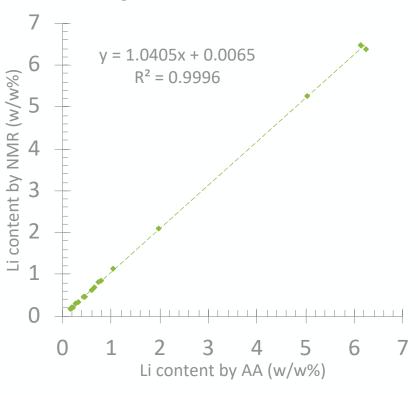
Method Validation (excerpt)

22-day Long term Stability

44 absolute integrals plotted, (RSD) (2 data points collected per day for 22 days)

Limit of detection (LOD) Limit of quantification (LOQ)

LOD (SNR = 3): 40 ppm Li⁺ LOQ (SNR = 10): 100 ppm Li⁺



Sample Analysis Results

Sample	Li content by NMR	RSD ^a	Li content by AA	Diff (%)b
1	0.166	1.86	0.163	1.8
2	0.201	1.06	0.197	2.0
3	0.222	0.83	0.226	-1.8
4	0.292	1.56	0.289	1.0
5	0.349	0.70	0.339	2.9
6	0.467	0.68	0.439	6.4
7	0.478	0.34	0.471	1.5
8	0.617	0.23	0.599	3.0
9	0.684	0.46	0.654	4.6
10	0.811	0.51	0.755	7.4
11	0.850	0.55	0.802	6.0
12	1.136	0.27	1.060	7.2
13	2.110	0.13	1.969	7.2
14	5.271	0.06	5.032	4.7
15	6.380	0.11	6.243	2.2
16	6.480	0.04	6.144	5.5

- Values obtained from NMR are comparable to that of values from AA
- RSD values of replicates were under 2%
- Values differ up to a maximum of 7.2%

Comparison NMR vs AA

The intercept is 0.0065 (0.0366 and -0.0236) The slope is 1.0405 (1.029–1.052) (R²) is equal to 0.9996

Development of qNMR Methods

7Li

31**P**

 ^{1}H

Determination of lithium content in brine pools from Chile

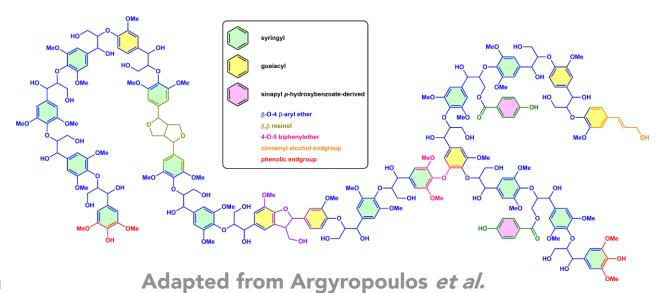
Identification of lignin substructures in Canada

Quantification of MDMA in ecstasy tablets collected at music festivals in the UK

Lignin Characterization

Lignin is a by-product of paper production

- Monomers are important building blocks
- Historically obtained from petroleum feedstocks
- Complex cross-linked phenolic polymers
- Structure needs to be determined


Challenge with lignin is structure determination

- Different for each lignin and very complex
- ¹H/¹³C NMR analyses suffer from too much overlap

Lignin was successfully derivatized with many nuclei

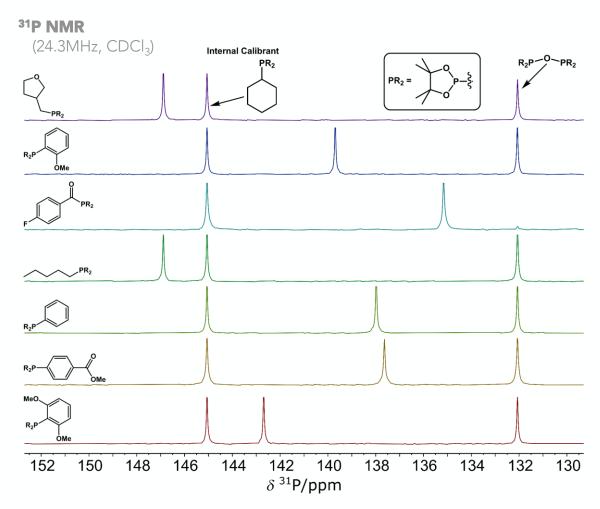
³¹P is an excellent nucleus for NMR analysis of lignin

- 100% natural abundance
- Large chemical shift range
- Gives rise to sharp lines

Phosphitylation Approach

This analysis was part of a round-robin study performed to assess a test method described in a future Canadian Standard Assoc. standard method

Phosphitylation of alcohol groups with TMDP


• Cyclohexanol used as internal calibrant

Reaction is immediate and quantitative

• 31P signals in δ = 130-150 ppm range

Large potential applicability for this approach, but lack of access (for many) to a high-field instrument

$$+ \bigvee_{O} P-CI \xrightarrow{Pyridine/CDCI_3} + \bigvee_{O} \bigvee_{O} P \xrightarrow{O} + \bigvee_{O} \bigvee_{$$

Identification of Lignin Substructures

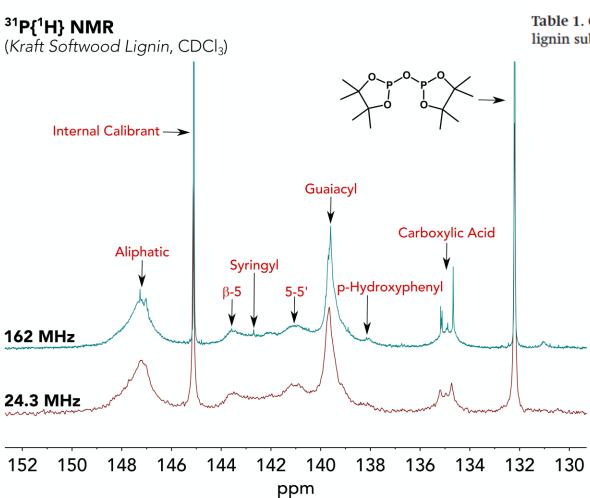


Table 1. Chemical shift ranges (³¹P NMR) used for integration of various regions for the quantification of lignin substructures.

Hardwood and wheat straw						
Functional group	Chemical shift range (ppm)					
Aliphatic	150.0-145.4					
Internal calibrant	145.4-144.6					
β-5	144.5-143.3					
4-0-5'	143.3-141.6					
5–5'	141.6-140.4					
Guaiacyl	140.4-138.5					
p-Hydroxyphenyl	138.5-137.0					
Carboxylic acid	136.0-133.6					
So	oftwood					
Functional group	Chemical shift range (ppm)					

Softwood						
Functional group	Chemical shift range (ppm)					
Aliphatic	150.0-145.4					
Internal calibrant	145.4-144.6					
β-5	144.5-143.0					
Syringyl	143.0-141.8					
5–5'	141.8-140.4					
Guaiacyl	140.4-138.3					
p-Hydroxyphenyl	138.3-137.0					
Carboxylic acid	136.0-133.6					

Identification of Lignin Substructures - Analysis Results

Table 2. Comparison of concentrations (in mmol/g) obtained from 24.3 MHz (Bench) and 162 MHz (HF) ³¹P NMR analysis.

		KSW			KSW			KHW			OHW			SOD	
Functional group	Bench ^a	HF^b	Error	Bench ^c	HF^d	Error	Bench	HF	Error	Bench	HF	Error	Bench	HF	Error
X (Aliphatic OH)	1.82 (0.3)	1.71	6%	1.88 (0.7)	1.71	10%	2.02 (1.4)	1.85	9%	2.44 (3.1)	2.37	3%	1.75 (1.1)	1.64	7%
X (5–5')	0.77 (0.4)	0.65	18%	0.72 (1.4)	0.66	9%	0.34 (1.4)	0.33	3%	0.24 (6.1)	0.22	9%	0.34 (3.2)	0.33	3%
X (4-0-5' or Syringyl OH) $^{\varepsilon}$	0.45 (0.9)	0.41	10%	0.56 (0.5)	0.41	37%	1.90 (2.0)	1.85	3%	1.50 (1.6)	1.51	1%	1.15 (0.5)	1.13	2%
X (β-5)	0.46 (1.8)	0.42	10%	0.50 (1.1)	0.42	19%	0.30 (4.2)	0.26	15%	0.28 (5.6)	0.26	8%	0.28 (1.9)	0.27	4%
X (Guaiacyl OH)	1.80 (1.5)	1.61	12%	1.82 (1.2)	1.63	12%	1.05 (2.2)	1.01	4%	0.80 (1.8)	0.82	2%	1.19 (1.4)	1.15	3%
X (p-Hydroxyphenyl OH)	0.13 (11.9)	0.16	19%	0.15 (3.6)	0.16	6%	0.12 (2.9)	0.19	37%	0.08 (16.1)	0.09	11%	0.46 (5.6)	0.47	2%
X (Carboxylic acid OH)	0.52 (0.7)	0.54	4%	0.56 (2.0)	0.54	4%	0.37 (8.7)	0.41	10%	0.17 (3.7)	0.18	6%	0.98 (0.3)	0.95	3%

Note: The benchtop NMR values are presented as the average of triplicate runs, and the relative standard deviations are provided in parentheses. Results for the individual triplicate analyses are included in the supplementary information (Table S1). 31024 SCans,

b128 scans.

c2048 scans.

d₂₅₆ scans.

c4-0-5' for KHW/OHW and syringyl OH for KSW/SOD. Error (%) = |content by Bench - content by HF|/content by HF x 100.

Development of qNMR methods

7Li

31P

¹H

Determination of lithium content in brine pools from Chile

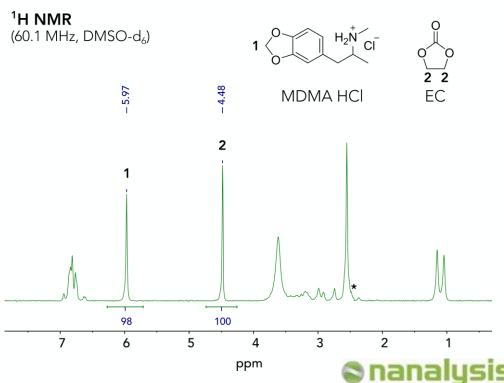
Identification of lignin substructures in Canada

Quantification of MDMA in ecstasy tablets collected at music festivals in the UK

Quantification of MDMA in Ecstasy Tablets

Problem

- MDMA quantification important for harm reduction and law enforcement
- Issues of overdoing and deaths related to drug poisoning
- Public Health England: £ 10.7 billion illicit drug costs in 2010/2011 in the UK

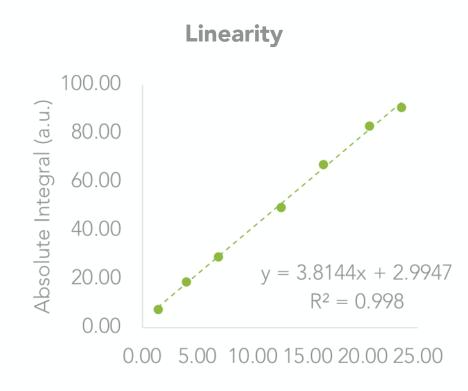


Method validation and street sample analysis of 100 tablets collected at music festivals in the UK

 Benchtop qNMR with ethylene carbonate (EC) as internal calibrant

ROI

- Simple sample preparation
- Robust method
- Rapid & accurate results


Method Validation (excerpt)

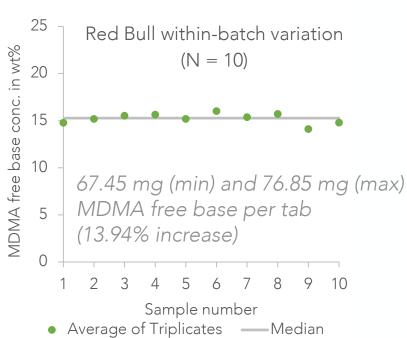
External quality testing

Tablet ID	MDMA cor	Deviction in 0/				
Tablet ID	NMR results	LC-MS results	Deviation in %			
16152	47.52	46.0	3.3			
18861	31.45	33.3	-5.6			
20252	33.95	33.2	2.3			
20284	20.06	20.0	0.3			
20307LA	30.79	32.7	-5.8			
22192/4	38.84	37.1	4.7			
24803	2.20	2.25	-2.2			
27099	12.92	12.8	0.9			
28042	41.53	40.6	2.3			
29596	60.69	59.8	1.5			

Limit of detection and limit of quantification

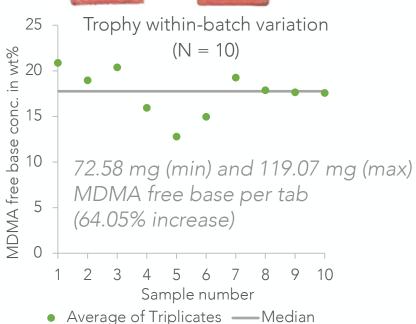
• LOD: 0.10 mg/mL (SNR \geq 3); LOQ: 0.33 mg/mL (SNR \geq 10)

Concentration MDMA HCI [mg/mL]


Street Sample Analysis (excerpt)

Within Batch Variation Testing

Small variation in MDMA content for the Red Bull tab



High variation in MDMA content for the Trophy tab

Conclusions

Benchtop technology offers unparalleled NMR access to academic and industrial users by **addressing accessibility issues**

- Low upfront and recurring costs
- No maintenance
- Expert staff not required
- Low infrastructure requirements
- Compact all in one benchtop NMR systems

We have demonstrated highly effective methods using ⁷Li, ³¹P, and ¹H qNMR (for others, please inquire)

- Determination of lithium content in brine pools in Chile
- Identification of substructures in lignin from Canada
- Quantification of MDMA in ecstasy tablets collected at music festivals in the UK

Acknowledgments

Susanne Riegel Juan Araneda Matthew Leclerc Paul Hui Jonathan Ma

> Thais Barbosa Kiana Nayebi

Simon Rainbow James Lyons Thomasine Curzon

Rodrigo Mercado Christopher Green Michael Paleologou

Ian Burton

Melanie Pinatton

Anca Frinculescu Trevor Shine John Ramsey

Vincenzo Abbate Nunzianda Frascione

Thank you for your time.

Please come by our booth tomorrow and chat with us!

